Skip to main content

Kerala University B.Tech First Year (Combined First and Second Semester) Mathematics sylabbus

08.103 ENGINEERING MATHEMATICS- I

Module-I Applications  of  differentiation:–  Definition  of  Hyperbolic  functions  and  their derivatives- Successive differentiation- Leibnitz’ Theorem(without proof)- Curvature-  Radius of curvature- centre of curvature-   Evolute ( Cartesian  ,polar and parametric forms)  Partial  differentiation  and  applications:-  Partial  derivatives-  Euler’s  theorem  on homogeneous  functions-  Total  derivatives-  Jacobians-  Errors  and  approximations-  Taylor’s  series  (one  and  two  variables)  - Maxima  and minima  of  functions  of  two variables - Lagrange’s method- Leibnitz rule on differentiation  under integral sign. Vector  differentiation  and  applications  :-  Scalar  and  vector  functions- differentiation of vector functions-Velocity and acceleration- Scalar and vector fields- OperatorÑ-  Gradient-  Physical  interpretation  of  gradient-  Directional  derivative- 
Divergence- Curl- Identities involving Ñ (no proof) - Irrotational and solenoidal  fields – Scalar potential. 
Module-II
Laplace  transforms:-    Transforms  of  elementary  functions  -  shifting  property- Inverse  transforms-  Transforms  of  derivatives  and  integrals-  Transform  functions multiplied   by  t and divided by  t  - Convolution  theorem(without proof)-Transforms of unit  step  function,  unit  impulse  function  and  periodic  functions-second  shifiting theorem- Solution of  ordinary  differential  equations with  constant  coefficients using Laplace transforms. Differential  Equations  and  Applications:-    Linear  differential  equations  with constant  coefficients-  Method  of  variation  of  parameters  -  Cauchy  and  Legendre  equations Simultaneous  linear  equations with  constant  coefficients- Application  to orthogonal trajectories (cartisian form only).
Module-III Matrices:-Rank  of  a  matrix-  Elementary  transformations-  Equivalent  matrices- Inverse of a matrix by gauss-Jordan method- Echelon form and normal form- Linear dependence and independence of vectors- Consistency- Solution of a system  linear equations-Non homogeneous and homogeneous equations- Eigen values and eigen vectors – Properties of eigen values and eigen vectors- Cayley Hamilton theorem(no proof)-  Diagonalisation-  Quadratic  forms-  Reduction  to  canonical  forms-Nature  of quadratic forms-Definiteness, rank, signature and index. 

Comments

Popular posts from this blog

Draft Sight DRAWING EXERCISE

To draw isometric views for the orthographic diagram shown here           LIST OF COMMANDS USED Line, Hatch, Snap, Ortho, Isometric grid PROCEDURE 1.       Set Ortho on. 2.       Enter Snap command, enter G for grid style and the I for isometric then press enter. 3.       Enter Isometricgrid and select T or top 4.       Enter Line command 5.       Select start point 6.       Specify next point: 40 7.       Specify next point : 15 8.       Specify next point : 20 9.       Specify next point : 15 10.   Specify next point : 20 11.   Specify next point: 60 12.   Specify next point: 8...

Draft Sight- Orthographic view of V block

Orthographic views for the pictorial diagram-V Block  LIST OF COMMANDS USED Line PROCEDURE 1.  Set the dimensions in mm and drawing boundary 210 x 297 mm 2.  Select line command icon in draw toolbar or type command LINE in command window. 3.  For Front View Specify start point» 0,0 [ENTER] 4.  Specify next point» @0,10 [ENTER] 5.  Specify next point» @-10,0 [ENTER] 6.  Specify next point» @0,60 [ENTER] 7.  Specify next point» @-10,0 [ENTER] 8.  Specify next point» @-25,-25 [ENTER] 9.  Specify next point» @0,-5 [ENTER] 10.  Specify next point» @-10,0 [ENTER] 11.  Specify next point» @0,5 [ENTER] 12.  Specify next point» @-25,25 [ENTER] 13.  Specify next point» @-10,0 [ENTER] 14.  Specify next point» @0,-60 [ENTER] 15.  Specify next point» @-10,0 [ENTER] 16.  Close 17.  Using the snap function draw the projection lines (thickness 0.15mm), Top view and side ...

BLOCKS: CREATE, EDIT, IMPORT AND EXPLODE IN DRAFTSIGHT

8.       BLOCKS: CREATE, EDIT, IMPORT AND EXPLODE. Aim To understand creating and editing blocks in DraftSight software. Blocks                                                A Block is a collection of entities bound together as a single entity. After creating a Block, we can insert it whenever we need it in a drawing. When you use the MakeBlock command, the symbol is recognized in the current drawing only. The MakeBlock command write a symbol to an external drawing file for use in any drawing. Click the MakeBlock icon on the Draw toolbar. The Block Definition dialog box is displayed. Name: Enter name. Description: Enter description. Units: Select Millimeters. Block entities: Click the Select in graphics a...